

Please check the examination details below before entering your candidate information

Candidate surname

Other names

Centre Number

Candidate Number

|  |  |  |  |
|--|--|--|--|
|  |  |  |  |
|--|--|--|--|

|  |  |  |  |  |
|--|--|--|--|--|
|  |  |  |  |  |
|--|--|--|--|--|

## Pearson Edexcel International Advanced Level

**Friday 14 June 2024**

Morning (Time: 1 hour 20 minutes)

Paper  
reference

**WCH16/01**



### Chemistry

International Advanced Level

**UNIT 6: Practical Skills in Chemistry II**

**You must have:**

Scientific calculator, ruler

Total Marks

### Instructions

- Use **black** ink or ball-point pen.
- If pencil is used for diagrams/sketches/graphs, it must be dark (HB or B)
- **Fill in the boxes** at the top of this page with your name, centre number and candidate number.
- Answer **all** questions.
- Answer the questions in the spaces provided  
– *there may be more space than you need.*

### Information

- The total mark for this paper is 50.
- The marks for **each** question are shown in brackets  
– *use this as a guide as to how much time to spend on each question.*
- You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, including your use of grammar, punctuation and spelling.
- A Periodic Table is printed on the back cover of this paper.

### Advice

- Read each question carefully before you start to answer it.
- Show all your working in calculations and include units where appropriate.
- Try to answer every question.
- Check your answers if you have time at the end.

**Turn over** ►

P75783RA

©2024 Pearson Education Ltd.  
F:1/1/1/1/1/1



**Pearson**

**Answer ALL the questions. Write your answers in the spaces provided.**

1 An organic compound **A** is a liquid. It contains two functional groups. Tests are carried out to identify **A**.

(a) Test 1 A small amount of phosphorus(V) chloride,  $\text{PCl}_5$ , is added to  $2\text{ cm}^3$  of **A**.

| Observation           |
|-----------------------|
| misty fumes given off |

Test 2 Aqueous sodium hydrogencarbonate,  $\text{NaHCO}_3\text{(aq)}$ , is added to  $2\text{ cm}^3$  of **A**.

| Observation         |
|---------------------|
| no visible reaction |

Identify, by name or formula, the functional group identified by these tests. Justify your answer.

(2)

.....

.....

.....

.....

(b) Test 3 A few drops of **A** are added to  $2\text{ cm}^3$  of Tollens' reagent (ammoniacal silver nitrate solution).

The mixture is placed in a warm water bath.

| Observation   |
|---------------|
| silver mirror |

Identify, by name or formula, the functional group identified by this test.

(1)



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(c) Compound **A** is non-cyclic and its mass spectrum has a molecular ion peak with  $m/z$  value of 74.

(i) Draw the **displayed** formula of the **two** structural isomers of **A**, using this information and your answers from (a) and (b).

(2)

(ii) A low resolution proton NMR spectrum of **A** shows four peaks with relative areas of 1:2:2:1.

Deduce which of the structures in (c)(i) is correct, by identifying the relative peak areas on your formula.

(1)

**(Total for Question 1 = 6 marks)**



P 7 5 7 8 3 R A 0 3 1 6

2 A series of experiments is carried out on an aqueous solution of a chromium(III) salt, **B**.

(a) **Experiment 1**

To a sample of solution **B**, aqueous sodium hydroxide is added drop by drop until in **excess**.

(i) Complete the table giving the observations you would see.

(2)

| Observation on adding a few drops of sodium hydroxide | Observation on adding an excess of sodium hydroxide |
|-------------------------------------------------------|-----------------------------------------------------|
|                                                       |                                                     |

(ii) State what you can deduce about the nature of chromium(III) hydroxide from the results of Experiment 1.

(1)

(b) **Experiment 2**

5 cm<sup>3</sup> of hydrogen peroxide solution is added to the final mixture formed in (a) (i) and heated gently.

A yellow solution containing chromate(VI) ions, CrO<sub>4</sub><sup>2-</sup>, is produced.

Explain the role of the hydrogen peroxide in this reaction.

Justify your answer.

(2)

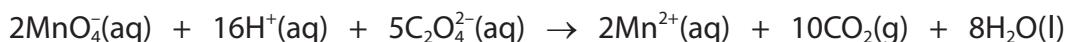

(c) **Experiment 3**

Dilute sulfuric acid is added to the yellow solution formed in Experiment 2. The solution turns orange.

Complete and balance the equation for this reaction.

State symbols are not required.

(1)




**(Total for Question 2 = 6 marks)**



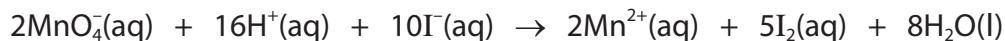
3 A group of students carried out an experiment to investigate the reaction between potassium manganate(VII) and ethanedioate ions in acid conditions.

The equation for the reaction is shown.

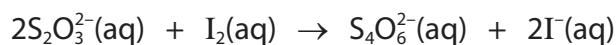


### Procedure

Step 1 Measure 10.0 cm<sup>3</sup> of potassium iodide solution into each of eight conical flasks.


Step 2 Measure 100.0 cm<sup>3</sup> of ethanedioic acid solution into a 250 cm<sup>3</sup> beaker. Add 25.0 cm<sup>3</sup> of potassium manganate(VII) solution and 5.0 cm<sup>3</sup> sulfuric acid to the beaker. Mix the contents of the beaker and start a timer.

Step 3 Immediately withdraw 10.0 cm<sup>3</sup> of reaction mixture and add it to the first conical flask containing (excess) potassium iodide solution.


Step 4 Continue removing 10.0 cm<sup>3</sup> of reaction mixture every minute for seven minutes. Each time, add the reaction mixture to a new conical flask containing the potassium iodide solution.

Step 5 Using starch as an indicator, titrate the iodine formed in the conical flasks with sodium thiosulfate solution.

The equation for the reaction in Step 3 is shown.



The equation for the titration in Step 5 is shown.

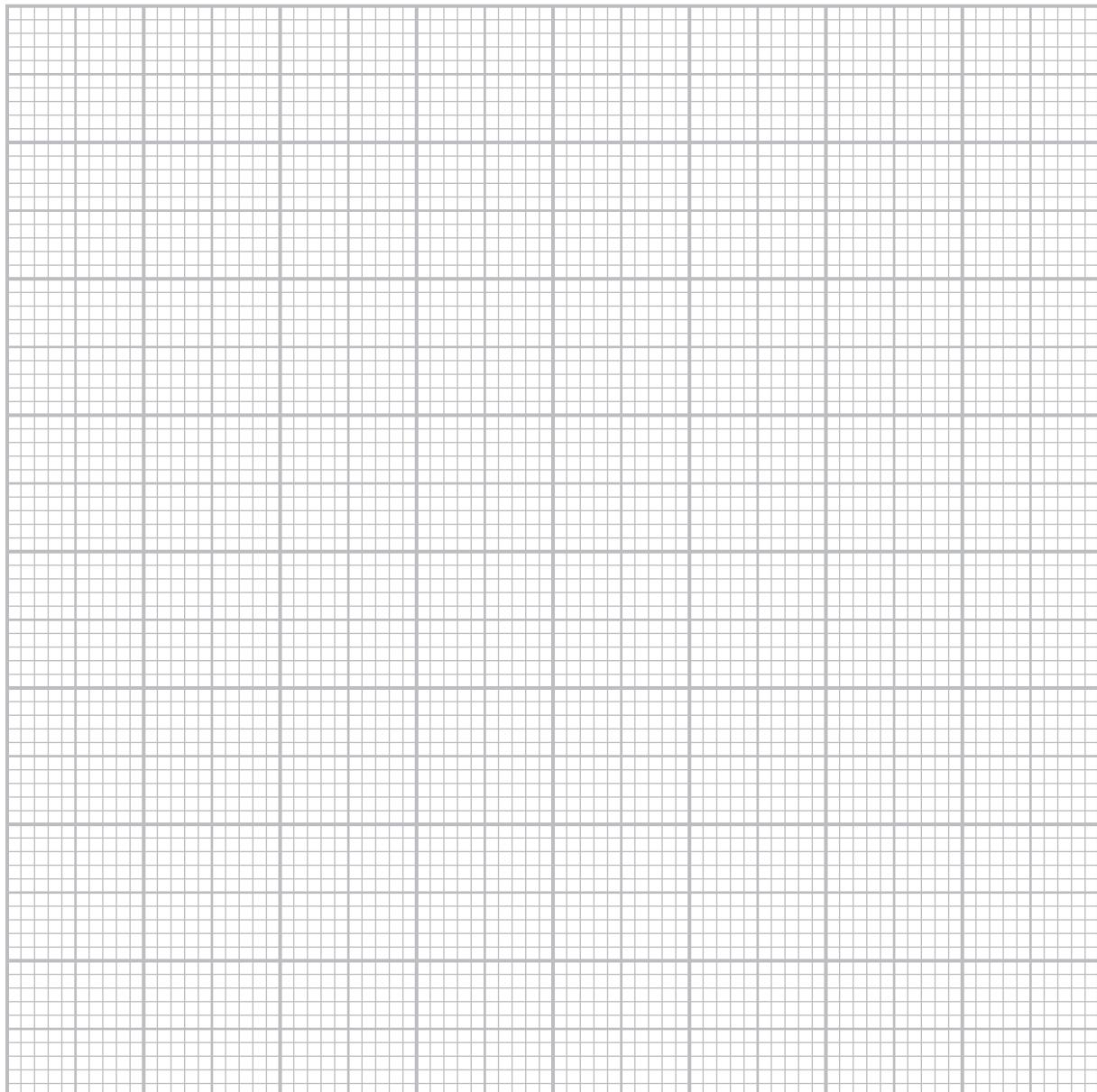


(a) (i) Explain why Step 3 effectively stops the reaction between potassium manganate(VII) and ethanedioate ions.

(2)

(ii) State when the starch indicator should be added during the titrations in Step 5.

(1)




(b) A student's results are shown.

| Time (t) / min                                 | 0     | 1     | 2     | 3     | 4     | 5    | 6    | 7    |
|------------------------------------------------|-------|-------|-------|-------|-------|------|------|------|
| Volume of sodium thiosulfate / cm <sup>3</sup> | 30.00 | 29.80 | 28.60 | 27.50 | 19.00 | 7.50 | 2.50 | 1.50 |

(i) Plot a graph of volume of sodium thiosulfate against time.

(3)



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(ii) Describe how the rate of reaction changes during the reaction.

(1)

---

---

---

(iii) Explain why the rate of reaction changes in this way.

(3)

---

---

---

---

---

---

---

---

---

---

---

---

---

---

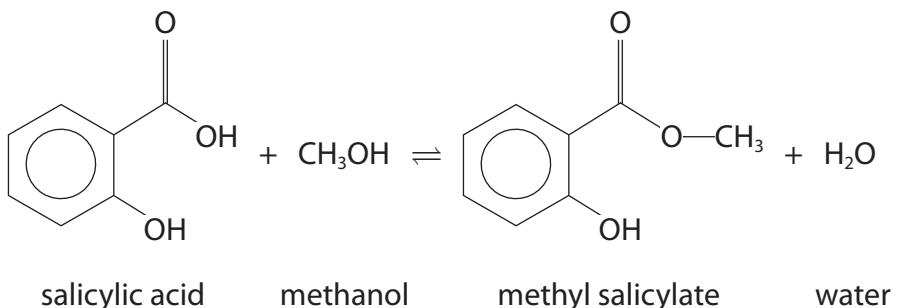
---

---

---

---

---


**(Total for Question 3 = 10 marks)**



P 7 5 7 8 3 R A 0 7 1 6

4 This question is about the laboratory preparation of the ester methyl salicylate (oil of wintergreen).

The equation for this reaction is shown.



### Procedure

Step 1 20.0 g of salicylic acid and 100 cm<sup>3</sup> of methanol are placed into a round-bottomed flask.

Step 2 15.0 cm<sup>3</sup> of concentrated sulfuric acid is added slowly, whilst swirling the flask.

Step 3 The mixture is heated gently under reflux for 45 minutes.

Step 4 After cooling, the mixture is poured into a separating funnel and about 50 cm<sup>3</sup> of iced water is added. The funnel is stoppered, shaken and allowed to settle. The aqueous layer is discarded.

Step 5 The organic layer is returned to the separating funnel and washed with 50 cm<sup>3</sup> of sodium carbonate solution.

Step 6 The aqueous layer is discarded leaving the crude methyl salicylate.

Step 7 The crude methyl salicylate is distilled and the fraction with the boiling temperature range 220–224 °C is collected.

Step 8 The pure methyl salicylate is transferred to a bottle and weighed.

(a) Show, by calculation, that the methanol is in excess in this preparation.

[ $M_r$  values: salicylic acid = 138.0      methanol = 32.0,  
Density of methanol = 0.791 g cm<sup>-3</sup>]

(3)



DO NOT WRITE IN THIS AREA

(b) State the purpose of the sulfuric acid.

(1)

---

---

(c) Draw a diagram of the apparatus used in Step 3 when the mixture is heated under reflux.

(3)



P 7 5 7 8 3 R A 0 9 1 6

(d) Describe how to wash the organic layer with sodium carbonate solution in Step 5.

(2)

---

---

---

(e) The mass of pure methyl salicylate obtained was 14.1 g.

Calculate the percentage yield, giving your answer to an appropriate number of significant figures.

(3)

**(Total for Question 4 = 12 marks)**



5 The label has come off a bottle known to contain an ammonium salt,  $\text{NH}_4\text{X}$ , where  $\text{X}$  is known to be a halide ion.

A student carried out an experiment to determine the identity of the halide,  $\text{X}$ .

### Procedure

Step 1 2.27 g of  $\text{NH}_4\text{X}$  was placed in a conical flask.

Step 2 50.0  $\text{cm}^3$  of 1.00  $\text{mol dm}^{-3}$  aqueous sodium hydroxide was added to the conical flask.

Step 3 The solution in the conical flask was boiled gently.

The equation for the reaction in Step 3 is shown.



Step 4 The gas coming from the conical flask was tested regularly until all the ammonia had been evolved.

Step 5 The flask was removed from the heat and allowed to cool.

Step 6 The entire contents of the flask, containing the excess sodium hydroxide solution, were titrated with a solution of 1.00  $\text{mol dm}^{-3}$  hydrochloric acid.

(a) (i) Describe how to carry out Step 4.


You should identify **both** how to perform the test **and** how you would know all the ammonia had been evolved.

(2)



P 7 5 7 8 3 R A 0 1 1 1 6

(ii) Containers of ammonia gas have the following hazard warning signs.



State these two hazards associated with ammonia.

(1)

---

---

(iii) Give a precaution to reduce the risk when carrying out Steps **3** and **4**.  
It is assumed that safety goggles and a laboratory coat are used.

(1)

---

---

(b) The titre in Step **6** is  $26.80 \text{ cm}^3$  of  $1.00 \text{ mol dm}^{-3}$  hydrochloric acid.

(i) Calculate the molar mass of  $\text{NH}_4\text{X}$ .

Use the data from Steps **1** and **2**.

(4)



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

(ii) Identify the halide **X**, present in  $\text{NH}_4\text{X}$ , using your answer to (b)(i).

(2)

(iii) Give a chemical test, with the expected result, to confirm the identity of the halide ion in a sample of  $\text{NH}_4\text{X}$ .

(2)



(c) Another student carried out the experiment but did not titrate all the contents of the conical flask in Step 6.

Instead they transferred the contents of the conical flask to a  $100.0\text{ cm}^3$  volumetric flask. The solution was made up to the mark with distilled water and mixed thoroughly.

25.0 cm<sup>3</sup> portions of this solution were placed in a conical flask and titrated with 1.00 mol dm<sup>-3</sup> hydrochloric acid.

Identify **one** advantage and **one** disadvantage of this alternative to Step **6**.

Justify your answers.

(4)

Advantage .....

.....

.....

.....

Disadvantage .....

.....

.....

.....

**(Total for Question 5 = 16 marks)**

**TOTAL FOR PAPER = 50 MARKS**



DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

DO NOT WRITE IN THIS AREA

**BLANK PAGE**



P 7 5 7 8 3 R A 0 1 5 1 6

# The Periodic Table of Elements

1 2

1.0  
H  
hydrogen  
1

Key

relative atomic mass  
atomic symbol  
name  
atomic (proton) number

(1) (2)

(3) (4)

(5) (6)

(7) (8)

(9) (10)

(11) (12)

(13) (14)

(15) (16)

(17) (18)

|           |           |           |               |          |            |            |           |            |             |             |         |          |         |          |           |        |       |  |  |  |
|-----------|-----------|-----------|---------------|----------|------------|------------|-----------|------------|-------------|-------------|---------|----------|---------|----------|-----------|--------|-------|--|--|--|
| 6.9       | 9.0       |           |               |          |            |            |           |            |             |             |         |          |         |          |           |        |       |  |  |  |
| Li        | Be        |           |               |          |            |            |           |            |             |             |         |          |         |          |           |        |       |  |  |  |
| lithium   | beryllium |           |               |          |            |            |           |            |             |             |         |          |         |          |           |        |       |  |  |  |
| 3         | 4         |           |               |          |            |            |           |            |             |             |         |          |         |          |           |        |       |  |  |  |
| 23.0      | 24.3      |           |               |          |            |            |           |            |             |             |         |          |         |          |           |        |       |  |  |  |
| Na        | Mg        |           |               |          |            |            |           |            |             |             |         |          |         |          |           |        |       |  |  |  |
| sodium    | magnesium |           |               |          |            |            |           |            |             |             |         |          |         |          |           |        |       |  |  |  |
| 11        | 12        |           |               |          |            |            |           |            |             |             |         |          |         |          |           |        |       |  |  |  |
| 39.1      | 40.1      | 45.0      | 47.9          | 50.9     | 52.0       | 54.9       | 55.8      | 58.9       | 58.7        | 63.5        | 65.4    | 69.7     | 72.6    | 74.9     | 79.0      | 79.9   | 83.8  |  |  |  |
| K         | Ca        | Sc        | Ti            | V        | Cr         | Mn         | Fe        | Co         | Ni          | Cu          | zinc    | Ga       | As      | Se       | Br        | Kr     |       |  |  |  |
| potassium | calcium   | scandium  | titanium      | vanadium | chromium   | manganese  | iron      | cobalt     | nickel      | copper      | 29      | 31       | 32      | 33       | 34        | 35     | 36    |  |  |  |
| 19        | 20        | 21        | 22            | 23       | 24         | 25         | 26        | 27         | 28          | 29          | 30      | 31       | 32      | 33       | 34        | 35     | 36    |  |  |  |
| 85.5      | 87.6      | 88.9      | 91.2          | 92.9     | 95.9       | [98]       | 101.1     | 102.9      | 106.4       | 107.9       | 112.4   | 114.8    | 118.7   | 121.8    | 127.6     | 131.3  |       |  |  |  |
| Rb        | Sr        | Y         | Zr            | Nb       | Mo         | Tc         | Ru        | Rh         | Pd          | Ag          | Cd      | In       | Sb      | Te       | I         | Xe     |       |  |  |  |
| rubidium  | strontium | yttrium   | zirconium     | niobium  | molybdenum | technetium | ruthenium | rhodium    | palladium   | silver      | cadmium | indium   | tin     | antimony | tellurium | iodine |       |  |  |  |
| 37        | 38        | 39        | 40            | 41       | 42         | 43         | 44        | 45         | 46          | 47          | 48      | 49       | 50      | 51       | 52        | 53     | 54    |  |  |  |
| 132.9     | 137.3     | 138.9     | 178.5         | 180.9    | 183.8      | 186.2      | 190.2     | 192.2      | 195.1       | 197.0       | 200.6   | 204.4    | 207.2   | 209.0    | [209]     | [210]  | [222] |  |  |  |
| Cs        | Ba        | La*       | Hf            | Ta       | W          | Re         | Os        | Ir         | Pt          | Au          | Hg      | Tl       | Bi      | Po       | At        | Rn     |       |  |  |  |
| caesium   | barium    | lanthanum | hafnium       | tantalum | tungsten   | rhenium    | osmium    | iridium    | platinum    | gold        | mercury | thallium | bismuth | polonium | astatine  | radon  |       |  |  |  |
| [223]     | [226]     | [227]     | [261]         | [262]    | [266]      | [264]      | [268]     | [268]      | [271]       | [271]       | [272]   | [272]    | [272]   | [272]    | [272]     | [272]  |       |  |  |  |
| Fr        | Ra        | Ac*       | Rf            | Db       | Sg         | Bh         | Hs        | Mt         | Ds          | Rg          |         |          |         |          |           |        |       |  |  |  |
| francium  | radium    | actinium  | rutherfordium | dubnium  | seaborgium | bohrium    | hassium   | meitnerium | damstadtium | roentgenium |         |          |         |          |           |        |       |  |  |  |
| 87        | 88        | 89        | 104           | 105      | 106        | 107        | 108       | 109        | 110         | 111         |         |          |         |          |           |        |       |  |  |  |

\* Lanthanide series

\* Actinide series

Elements with atomic numbers 112-116 have been reported but not fully authenticated

|         |              |           |            |           |           |            |           |             |             |         |          |           |            |  |  |  |  |  |  |
|---------|--------------|-----------|------------|-----------|-----------|------------|-----------|-------------|-------------|---------|----------|-----------|------------|--|--|--|--|--|--|
| 140     | 141          | 144       | [147]      | 150       | 152       | 157        | 159       | 163         | 165         | 167     | 169      | 173       | 175        |  |  |  |  |  |  |
| Ce      | Pr           | Nd        | Sm         | Eu        | Gd        | Tb         | Dy        | Ho          | Er          | Tm      | Yb       |           |            |  |  |  |  |  |  |
| cerium  | praseodymium | neodymium | promethium | samarium  | europium  | gadolinium | terbium   | dysprosium  | holmium     | erbium  | thulium  | ytterbium | lutetium   |  |  |  |  |  |  |
| 58      | 59           | 60        | 61         | 62        | 63        | 64         | 65        | 66          | 67          | 68      | 69       | 70        | 71         |  |  |  |  |  |  |
| 232     | [231]        | 238       | [237]      | [242]     | [243]     | [247]      | [245]     | [251]       | [253]       | [254]   | [255]    | [256]     | [257]      |  |  |  |  |  |  |
| Th      | Pa           | U         | Np         | Pu        | Am        | Cm         | Bk        | Cf          | Es          | Fm      | Md       | No        | Lr         |  |  |  |  |  |  |
| thorium | protactinium | uranium   | neptunium  | plutonium | americium | curium     | berkelium | californium | einsteiniun | fermium | meklevum | noetinium | lawrencium |  |  |  |  |  |  |
| 90      | 91           | 92        | 93         | 94        | 95        | 96         | 97        | 98          | 99          | 100     | 101      | 102       | 103        |  |  |  |  |  |  |

